

Overview of the Keck Interferometer
Dr. Gerard van Belle, JPL
2 March 1999, VLT Opening Symposium
http://huey.jpl.nasa.gov/keck

Outline

- Introduction
- Science with Keck Interferometer
- Instrument description
- Observing approach

Keck Interferometer

- Interferometry with the two 10-m Keck telescopes on Mauna Kea and four 1.8-m outrigger telescopes
- NASA-funded joint project between JPL and CARA
- Five-year development; funding starting FY98
- Broad range of science capabilities

Palomar Testbed Interferometer

Schedule

Key features

- Michelson combination among two 10-m Kecks and four 1.8-m outriggers
 - Keck-Keck baseline: 85 m
 - Outrigger-outrigger baseline: 25 m (min) / 140 m (max)
- Phasing with adaptive optics and fast tip/tilt correction
- Cophasing with fringe detection/tracking and active delay lines
 - Dual-star feeds at each telescope
- Back-end instruments
 - Two-way beam combiners at 1.6--2.4 μm for fringe tracking (cophasing), astrometry, and imaging
 - Multi-way imaging combiner at 1.6--5 μm and 10 μm
 - Nulling combiner at 10 μm

Science using the two Kecks

- Detection of hot Jupiters
 - Uses two-color differential-phase technique
- Characterization of exozodiacal dust
 - Survey a number of nearby systems for integrated exozodiacal emission at 10 μm
 - Important for Terrestrial Planet Finder (TPF) mission planning
- High sensitivity parametric imaging

Science enabled by the outriggers

- Astrometric search for planets
 - Survey 100's of nearby stars for planets to Uranus mass
 - Uses outrigger telescopes for longterm survey
- Imaging with 6-element array
 - Good (u,v)-plane coverage
 - 9 of 15 baselines include a 10-m telescope
 - » Background-limited sensitivity equivalent to two 4.4-m's
 - » Other imaging options using 1 Keck with outriggers, or just outriggers

Site plan

- 4 outrigger telescopes
- 2 additional outrigger pads (for future expansion)
- Underground pipes for light propagation to Keck basement

Instrumentation in Keck basement Stairs Input/ Output Plane Long Delay Line Beam Compression 10 μm Camera Angle Tracker 1-5 μm Camera Switchyard components 2.2 µm Camera Control Room Fast Delay Line

Keck Interferometer Beam Train

Telescopes

- Two 10-m Keck telescopes
 - 85-m Keck-Keck baseline
- Four 1.8-m outrigger telescopes
 - Used with Kecks for imaging
 - Used separately for astrometry
 - Key specifications
 - » 10-cm collimated output (after DSM)
 - » Stable pivot for astrometry
- For instrument debugging, 40-cm siderostats (like on PTI) will be used

Wavefront Correction

Adaptive optics on the Kecks

- NGS + LGS AO on K2
- Add new system for K1
- Minor mods needed to accommodate interferometry

• Tip/Tilt correction on outriggers

- Fast tip/tilt is adequate for near-IR operation
- Correction via active secondary
- Sensing in beam-combining lab

Dual-star module (DSM)

- Separates and tracks primary and secondary stars for cophasing and astrometry
- Produce two collimated beams to feed coude train
- DSM for Kecks slides in like NIRSPEC

Coude Train and Beam Transport

- Keck coude train needs to be completed to bring light from DSM to base of telescope (M7)
 - Also need to derotate secondary beam
- Similar coude needed on outriggers
- Beam transport system routes light from M7 to delay lines in interferometry lab

Transport Optics

- Requirements
 - Relay primary/secondary starlight clear apertures from end of coudé train to beginning of LDL
 - 146mm oversize for two 100mm starlight beams
 - Most mounts in TO train actuated for autoalignment system
 - Maintain polarization / image rotation budgets
- Derived specifications
 - 176mm center-to-center beam spacing
 - 90% clear aperture mirror at 45° means
 355mm x 227 mm mirrors

Long Delay Lines

Long Delay Line

• Requirements

- Accept light from TO, output split starlight beams to FDL
- Provide 0-170m of delay for up to 8 telescopes
- 1 mm knowledge of position
- Fit in coudé tunnel
- Move/realign with a telescope pointing/acquire time (1 min move, 3 min realign)

Design

- Two 355mm x 161mm mirrors on a common mount
- LDL sleds are stripped-down FDL carts

Fast Delay Lines

- Continuous tracking of sidereal and atmospheric motion
- PTI-type 4-stage design
- One per beam
- 20-m delay range

Fast Delay Line

- Requirements
 - Accept light from LDL, output 4:1 compressed beam to Swyd
 - Provide 0-20m of delay for up to 16 starlight beams
 - Jitter requirement: 10nm rms control
 - Accept handoffs at up to 5 kHz
- Design
 - Standard 4-stage design
 - 146mm starlight clear path; 25mm
 metrology clear path

Switchyard and stimulus

- Switchyard: accepts 12 delayed starlight beams and directs to beam combiner for desired mode
- Stimulus: star simulator to test all starlight subsystems

Title: layout.fig
Creator: fig2dev Version 3.1 Patchlevel 2
CreationDate: Thu Aug 28 19:17:48 1997

Title: stimulus only.fig

Creator: fig2dev Version 3.1 Patchlevel CreationDate: Thu Aug 28 23:01:27 1997

Laser Metrology

- Three types
 - Local metrology of delay lines for servo control
 - End-to-end metrology of optical path for astrometry and cophasing
 - Accelerometer sensing of common-mode telescope optics

Title: Kect CT Launcher

Creator: fig2dev Version 3.1 Patchlev CreationDate: Fri Aug 29 02:30:37 199

Angle Tracker

- For outriggers
 - Primary (high bandwidth) and secondary (low bandwidth with feedforward)
 - Correction via active secondary
- For Kecks
 - Track offsets to AO system
- Sensor
 - J-band infrared array
 - Separate dewars for primary and secondary stars

Cophasing (2 µm) combiner

- Provide 5 two-way 2-μm combiners to support
 - Cophasing at H&K
 - Astrometry primary
 - Astrometry secondary
 - Single-baseline science
- Use low-noise FPA with fast reac capability like PTI
- · Uses two fiber-fed dewars

Two-Way Combiner

Multi-way science combiner

- Pair-wise measurements on up to 15 baselines simultaneously
- Non-redundant cross-dispersed image-plane combiner
- 1.6--5.0 μm coverage with mid-wave MCT array
- 10 μm coverage with 10-μm nulling camera

10 μm Nulling combiner

- Primary instrument for exozodiacal characterization
- Fast, switchable nulls on two spatial scales
- 10-µm infrared array camera

Title: Keck nuller

Creator: fig2dev Version 3.1 Patchlevel 2 CreationDate: Tue Aug 26 11:26:23 1997

Operating Modes

- Nulling for exozodiacal characterization
- Two-color differential-phase measurement
- Astrometry for detecting exoplanets
- Cophased imaging with 4, 5, or 6 telescopes

Exozodiacal dust and the Terrestrial Planet Finder

- For direct detection of exoplanets with TPF, the one unavoidable noise source is thermal emission of dust around the target star
- For our own solar system, the dust in the inner solar system will emit more 10-μm radiation than an Earth by a factor of ~50
- Exozodiacal dust adds noise; structure in dust adds spurious signatures
- Ground-based interferometric measurements can be used to identify low-dust system for observation by TPF

SNR for exozodiacal signal

- Features of the exozodiacal problem at 10 μm
 - Strong light from central star
 - Relatively weak exozodiacal signal
 - Strong 10-μm background
- If background limited, SNR is good

		flux (photons/sec)
Star at 10 p	100000	1.5e8
Background		7.0e10
Exozodi (10	x solar sys)	1.3e5
SNR in 1 hr		15

- $\lambda = 10 \mu m$, $\Delta \lambda / \lambda = 0.3$
- emissivity = 0.5, $A\Omega = 1 \lambda^2$
- total system efficiency = 0.1

The 1σ upper limit in 1 hour of integration is ~0.7 solar-system equivalents

Measuring exozodiacal dust with nulling interferometry

- Use interferometry with fast-switched nulls on aperture and interferometer spatial scales
 - Switched nulls modulate signal w/o changing background
 - Different scales distinguish between star and exozodiacal signal
 - Single-mode spatial filter accommodates imperfect Strehl

Target at 10 pc

- Two nuller scales at 10 μm
 - Aperture:

 λ / diameter = 200 mas

– Interferometer:

 λ / baseline = 25 mas

Achieving an achromatic null

- Use Achromatic Nulling Interferometer (ANI):
 - ANI is an all-reflective, broadband, rotational shearing interferometer
 - Destructive interference at fringe center provides a deep 'null'

Astrometry

- Scientific objectives
 - Astrometric detection of planetary systems
 - Characterization of those planetary systems (specifically, multiple component systems)
- Specific questions to be answered
 - What is the relative frequency of planetary companions?
 - » Both in general and as a function of specific parameterizations (e.g., spectral type)
 - What is the nature of the planetary formation process?
 - Is our own solar system typical or atypical?

JPL

Dual Star Astrometry

- Primary star
 - Used to phase individual apertures
 - Used to cophase the interferometer
- Secondary star
 - Can integrate upon
 - Used as positional reference for primary star
- Delay line difference
 - Serves as measure of angular separation between stars
 - Angular separation can reflect periodic reflex motion of stars due to planetary companions

Primary/Secondary Delay Line Detectors Detectors

Telescope 1

CARA

Secondary

Telescope 2

- Reference star limitations
 - Must be within one isoplanatic patch (\sim 20" radius on the sky)
 - Photon noise contributes to overall error

Astrometric Observing

- Statistically significant target sample desired
 - 80 stars down to Uranus mass, 250 stars down to Jupiter mass
 - » Uranus/Jupiter masses show 25/125 μ as signal, respectively
 - Achieves two important goals for spectral types A, F, G, K & M:
 - » uncertainty in inferred planetary frequency rate 0.06 0.15 by subset
 - » P > 0.75 for planetary detection within a subset (> 0.999 for G, K, M)
- Proposed program: 50% of the outrigger observing
 - Delivers ~775 hours of observing annually
 - » 10 hours/night, 1/3 lost to weather, 20% time for calibration, 20% time lost due to instrument unavailability
 - Need two reference stars per astrometric target to isolate signatures
 - Need 4 observations per star annually
 - » Large Jupiter sample can be done quickly ($\sim 1/3$ of the total time)
 - Options for greater throughput being explored
 - » E.g., one reference star per baseline per astrometric target

Astrometric Requirements

- Astrometric performance
 - Requirement: 30 μ as/ \sqrt{hr}
 - Goal: 19 μ as/ \sqrt{hr} would allow doubling of primary sample
- Reference star brightness: $m_{\rm K} \le 17.2$
 - Sharp dropoff in star counts for $m_{\rm K}$ <17 compounded by need for two nearby reference stars
 - Drives requirement for 1.8m telescope apertures
- Target star brightness: $m_{\rm K} \le 8.5$
 - Majority (>97%) of nearby stars out to 32 pc
- High throughput
 - 3 minutes star-to-star (15° field) 'dead time'
- Metrology-contiguous FOV
 - 15° radius needed to find reference stars

Two-Color Phase-Reference Interferometry

- Scientific objectives
 - Direct detection of warm jovian planets
 - » Includes orbital characterization→ measuring the mass
 - Spectroscopic characterization of those planets
- Specific questions to be investigated
 - The same ones as astrometry, in addition to:
 - What is the nature of warm jovian atmospheres?
 - » Can compare to data on Jupiter/brown dwarfs/stars

Known Warm Jovians

Star	Orbit (AU)	T (K)	Sep. (arcsec)
HD 114762	0.40	475	0.014
υ And	0.05	1300	0.003
τ Βοο	0.05	1400	0.003
55 p Cnc	0.11	900	0.008
16 Cyg	1.72	230	0.08
51 Peg	0.06	1200	0.004
70 Vir	0.43	450	0.019
ρ CrB	0.23	625	0.014
47 UMa	2.10	200	0.16

Detecting Warm Jupiters with Two-Color Observations

- Two-color phase referencing
 - Short wavelength: phase reference
 - » center of light close to star
 - Long wavelength: science measurement
 - » center of light displaced towards planet
 - Phase difference is observable
 - » use adjacent bands on one detector
 - » very insensitive to systematics
- GL229B: significant changes in flux ratio just between 1.6 & 2.2 μ m

Signal-to-Noise Ratio for Detecting Warm Jupiters

• H-K Example

- 1300K planet
- $-\Delta\varphi_{\rm K}=1.11\times10^{-4}$ rad
- Requires SNR= 10⁴
- For m_{K} = 4.0, SNR = 2000 in 10 ms \rightarrow 0.25 s

M-N Example

- 650K Planet
- $-\Delta\varphi_{\rm M}=0.63\times10^{-4}\,{\rm rad}$
- Requires SNR=1.6×10⁴
- For $m_{\rm M}$ = 4.0, SNR = 700 in 10 ms $\rightarrow t$ = 6

	1300 K Pla	net (51 Peg)	650 K Planet (p CrB)		
Wavelength	Planet/Star	$\Delta \phi$ relative	Planet/Star	$\Delta \phi$ relative	
(µm)	Intensity Ratio	to next	Intensity Ratio	to next	
	$(x 10^4)$	shorter channel	$(x 10^4)$	shorter channel	
1.6	0.39		0.000		
2.2	1.50	1.11	0.010	0.01	
3.5	4.90	3.40	0.200	0.19	
5	8.50	3.60	0.830	0.63	
10	15.00	6.50	3.400	2.57	

(u,v) coverage and raw PSF

6 telescopes, one night source at 19 deg decl.

Angular resolution:

3 mas @ 2.2 μm 10 mas @ 10 μm

JPL

On axis Full Array

10 um

N/A

CARA

2 Kecks + 4 Outriggers

9.1

7.2

Expected Performance (NGS)

Cophasing Limit:		4 Out 155019 T VOOR 1 4 Out 155019			Z IXCCRS + 4 Oddiggers				
		2m/2m	10m / 2m	2m / 2m	10m / 10m	10m/2m	2m/2m		
2.2 um		11.0	12.8	N/A	15.0	12.9	N/A		
Astrometric		4 Outriggers	Outriggers			cks + 4 Outrig	s + 4 Outriggers		
Off-axis Limit:	2m/2m	2m/2m	10m≠2m = 1	2m / 2m	10m / 10m	10m/2m	2m/2m		
1.6 um	N/A	19.1	21.2	19.0	23.5	21.0	18.8	3	
2.2 um	17.0	18.2	20.1	18.0	22.1	20.0	17.9)	
3.5 um	N/A	13.5	15.3	13.3	17.1	15.1	13.2	2	
5 um	N/A	11.0	12.7	10.8	14.5	12.6	10.7	7	

1 Outriggers 1 Keek + 1 Outriggers

7.5

SNR=10 for cophasing, K only SNR=10 per baseline in 1000 sec for imaging SNR=72 in 3600 sec for astrometry

9.2

7.3

10.9

CARA Artist's conception of Keck Interferometric Array

